Volume 11 Issue 1
Biodegradation Kinetics of Tetrahydrofuran, Benzene, Toluene, and Ethylbenzene as Multi-substrate by Pseudomonas oleovorans DT4
Dong-Zhi Chen,Yun-Feng Ding,Yu-Yang Zhou,Jie-Xu Ye andJian-Meng Chen
1College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
2School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
*Authors to whom correspondence should be addressed.
Abstract
The biodegradation kinetics of tetrahydrofuran, benzene (B), toluene (T), and ethylbenzene (E) were systematically investigated individually and as mixtures by a series of aerobic batch degradation experiments initiated by Pseudomonas oleovorans DT4. The Andrews model parameters, e.g., maximum specific growth rates (μmax), half saturation, and substrate inhibition constant, were obtained from single-substrate experiments. The interaction parameters in the sum kinetics model (SKIP) were obtained from the dual substrates. The μmax value of 1.01 for tetrahydrofuran indicated that cell growth using tetrahydrofuran as carbon source was faster than the growth on B (μmax, B = 0.39) or T (μmax, T = 0.39). The interactions in the dual-substrate experiments, including genhancement, inhibition, and co-metabolism, in the mixtures of tetrahydrofuran with B or T or E were identified. The degradation of the four compounds existing simultaneously could be predicted by the combination of SKIP and co-metabolism models. This study is the first to quantify the interactions between tetrahydrofuran and BTE.
Keywords: biodegradation; tetrahydrofuran; benzene; toluene; ethylbenzene; kinetics model